2014安徽公务员考试300道典型行测数学题题目及解析(五)(3)
2014-02-13 16:54芜湖公务员考试网 来源:芜湖公务员考试网
芜湖公务员考试网同步芜湖公务员考试网提供以下公务员安徽公务员信息:2014安徽公务员考试300道典型行测数学题题目及解析(五)(3),更多关于芜湖公务员考试网,公务员安徽公务员的内容,请关注芜湖公务员考试网/芜湖人事考试网!
221. 现有60根型号相同的圆钢管,把它堆放成正三角形垛,要使剩下的钢管尽可能少,则余下的钢管数是:
A.7 B.6 C.5 D.4
解析:堆放成三角形垛后,从上向下数:第1层1根、第二层2根、第三层3根。。。。。。。最后一层x根
则堆放成三角形垛总共需要1+2+3+。。。+x=[x(1+x)]/2根钢管,要求剩下的钢管最少=>用掉的钢管[x(1+x)]/2最大,又总共有钢管60个,=>[x(1+x)]/2 < 60 => x(1+x)<120=>x最大为10=>所用钢管最大值为[x(1+x)]/2=55=>所剩下的钢管最小值为60-55=5。
222. 商店购进甲、乙两种不同的糖所用的钱数相等,已知甲种糖每千克6元,乙种糖每千克4元,如果把这两种糖混在一起为什锦糖,那么这种什锦糖每千克的成本是多少元?
A.3.5 B.4.2 C.4.8 D.5
解析:商店购进两种糖所用的钱数是m,则购进甲糖m/6千克,乙糖m/4千克,两种糖混合在一起总钱数是2m,总重量是(m/6+m/4),所以价格即成本是:2m/(m/6+m/4)=4.8选C
223. 4 , 2 , 2 , 3 , 6 , 15 , ( ?)
A.16 B.30 C.45 D.50
解析:每一项与前一项之商=>1/2、1、3/2、2、5/2、3等差
224. 一艘游轮逆流而行,从A地到B地需6天;顺流而行,从B地到A地需4天。问若不考虑其他因素,一块塑料漂浮物从B地漂流到A地需要多少天?
A.12天 B.16天 C.18天 D.24天
解析:设静水速度是X,水流速度是Y,那么可以列出方程组:1/(X-Y)=6,1/(X+Y)=4;
可解得1/Y=24,即为水流速度漂到的时间
225. 求1+3+5+2+4+6+3+5+7+4+6+8+5+7+9……+100的结果
解析:1+3+5=9,2+4+6=12,3+5+7=15,4+6+8=18,5+7+9=21,
从上面的9,12,15,18,21不难发现其公差都为3
那么按按上面五个式子的排列推最后的五个加式应该为:
91+93+95,92+94+96,93+95+97,94+96+98,95+97+99,
最后一项是96+98+100 =294这几个式子公差也为3,那么上面的的数列就可以变为从9+12……+291+100
(294-9)÷3+1=96
(9+294)÷2×96=14544
226. 有一列火车以每小时140千米的速度离开洛杉矶直奔纽约,同时,另一列火车以每小时160千米的速度从纽约开往洛杉矶。如果有一只鸟以每小时30千米的速度和两列 车同时启动,从洛杉矶出发,碰到另一列车后返回,往返在两列火车间,直到两列火车相遇为止。已知洛杉矶到纽约的铁路长4500千米,请问,这只小鸟飞行了多远路程?
解析:解析:小鸟在两列火车之间往返飞行,思维也很容易随着"跑"起来。如果我们试图算出那些越来越短的路程,问题就会十分复杂。其实大可不必,因为这只小鸟一直在两列火车间一刻不停地飞,所以,火车的相遇时间就是小鸟的飞行时间。这样,小鸟的飞行路程为:30×[4500÷(140+160)]=450(千米)。
227. 有砖26块,兄弟二人争着去挑。弟弟抢在前面,刚摆好砖,哥哥赶到了。哥哥看弟弟挑的太多,就抢过一半。弟弟不肯,又从哥哥那儿抢走一半。哥哥不服,弟弟只好给哥哥5块,这时哥哥比弟弟多挑2块。问最初弟弟准备挑多少块?解析:先算出最后各挑几块:(和差问题)哥哥是(26+2)÷2=14,弟弟是26-14=12,然后来还原:1. 哥哥还给弟弟5块:哥哥是14-5=9,弟弟是12+5=17;2. 弟弟把抢走的一半还给哥哥:抢走了一半,那么剩下的就是另一半,所以哥哥就应该是9+9=18,弟弟是17-9=8;3. 哥哥把抢走的一半还给弟弟:那么弟弟原来就是8+8=16块.
228. 甲、乙、丙三人钱数各不相同,甲最多,他拿出一些钱给乙和丙,使乙和丙的钱数都比原来增加了两倍,结果乙的钱最多;接着乙拿出一些钱给甲和丙,使甲和丙的钱数都比原来增加了两倍,结果丙的钱最多;最后丙拿出一些钱给甲和乙,使甲和乙的钱数都比原来增加了两倍,结果三人钱数一样多了。如果他们三人共有81元,那么三人原来的钱分别是多少元?
解析:三人最后一样多,所以都是81÷3=27元,然后我们开始还原:1. 甲和乙把钱还给丙:每人增加2倍,就应该是原来的3倍,所以甲和乙都是27÷3=9,丙是81-9-9=63;2. 甲和丙把钱还给乙:甲9÷3=3,丙63÷3=21,乙81-3-21=57;3. 最后是乙和丙把钱还给甲:乙57÷3=19,丙21÷3=7,甲81-19-7=55元.
229. 有一辆自行车,前轮和后轮都是新的,并且可以互换,轮胎在前轮位置可以行驶5000千米,在后轮位置可以行驶3000千米,问使用两个新轮胎,这辆自行车最多可以行多远?
解析:如果我们考虑在中途某个时刻将车轮调换,则非常麻烦。如果将这个问题转化成工程问题:把一个车轮的使用寿命看作单位“1”,则每行1千米,前轮被使用了1/5000,后轮被使用了1/3000,这样用两个轮子的寿命2÷(1/5000+1/3000)=3750(千米),很容易就求出使用这两个轮子最多可以行3750千米,就不用考虑何时调换轮子这个恼人的问题。
230. 星期六,某同学离家外出时看了看钟,2个多小时后回到家又看了看钟,发现时针和分针恰好互换位置。请计算,该同学离家外出多少小时?
解析:这看上去是个时间问题,但如果我们仅仅局限于钟面上的时间问题去思考,很难找到解题思路。可以将这个问题转化成行程问题,这样想:在这两个多小时中,分钟转两圈多(红线表示),时针走了两个多大格(绿线表示),两针交换了位置,如下图,两针这段时间里正好走了三圈,相当于这段时间内时针和分针合走了三圈,这样就将钟面的时间问题转化成了行程中的相遇问题。
用总路程3(3圈)除以速度和(1+1/12)【想:分针1小时走1圈,时间1小时走1大格,即1/12】,列式为3÷(1+1/12)=2又13分之10(小时)。
231. 一个男子到一家手杖店去买了一根30元的手杖,付出一张50元的钞票。店主找不出零钱,就到隔壁小店去竞零票。零票兑来,付给顾客20元的找头,顾客就离去了。隔了一会,隔壁店主慌张地过来说,那张50元的钞票是伪钞,手杖店的店主不得不赔了50元。事后,店主觉得很伤心。他算了一下找给顾客20元,又赔给隔壁的店主50元,一共损失了70元。但又一想,顾客只占了50元的便宜,隔壁店主没有损失,也没有占便宜。这相差的20元咋回事呢?
解析:其实,当手杖店主与隔壁小店没有发生经济往来。手杖店主与顾客的经济往来是,顾客给小店50元伪钞,而小店给顾客一根手杖(30元)和20元找头,计50元。所以,手杖店主损失50元,而不是70元。
232. 一次考试共有五道试题,做对第(原题没有“第”字)1、2、3、4、5题的分别占考试人数的84%、88%、72%、80%、56%,如果做对三道或三道以上为及格,那么这次考试的及格率至少是多少?
解析:假设这次考试有100人参加,那么五题分别做对的人数为84、88、72、80、56人。全班共做对84+88+72+80+56=380(题)。要求及格率最少,也就是让不及格人尽量的多,即仅做对两题的人尽量的多;要让及格的人尽量的少,也就是说共做对5题和共做对4题的人要尽量的多。我们可以先假设所有人都只做对两题,那么共做对100×2=200(题)。由于共做对5题的最多有56人,他们一共多做了56×3=168(题),这时还剩下380-(200+168)=12(题)。因为做对4题的人要尽量的多,所以每2题分给一个人,可以分给12÷2=6(人),即最多6个人做对4题。加上做对5题的56人,那么及格的人最少有56+6=62(人),也就是及格率至少为62%。
233. 大小球共100个,取出大球的75%,取出小球的50%,则大小球共剩30个。问原有大小球各多少个?
解析:依题意“取出大球的75%,取出小球的50%,则大小球共剩30个”得:
大球个数×(1-75%)+小球个数×(1-50%)=30
大球个数×25%=30-小球个数×50%
大球个数×25%=(60-小球个数)×50%即,大球个数∶(60-小球个数)=50%∶25%=2∶1
从而知,大球个数是2份,(60-小球个数)是1份,大球个数比(60-小球个数)多(2-1)份,即[大球个数-(60-小球个数)]为(2-1)份,也就是(大球个数+小球个数-60)为(2-1)份,又知大小球共100个,故(100-60)个为(2-1)份,又知大小球共100个,故(100-60)个为(2-1)份,即40个是1份。因此,大球个数有(40×2=)80(个),小球个数有(100-80=)20(个)。
234. 四年级有4个班,不算甲班其余三个班的总人数是131人;不算丁班其余三个班的总人数是134人;乙、丙两班的总人数比甲、丁两班的总人数少1人,问这四个班共有多少人?
解析:用131+134=265,这是1个甲、丁和2个乙、丙的总和,因为乙、丙两班的总人数比甲、丁两班的总人数少1人,所以用265-1=264就刚好是3个乙、丙的和,264÷3=88,就是说乙丙的和是88,那么甲丁和是88+1=89,所以四个班的和是88+89=177人.
235. 有老师和甲乙丙三个学生,现在老师的年龄刚好是三个学生的年龄和;9年后,老师年龄为甲、乙两个学生的年龄和;又3年后,老师年龄为甲、丙两个学生的年龄和;再3年后,老师年龄为乙、丙两个学生的年龄和。求现在各人的年龄。
解析:老师=甲+乙+丙,老师+9=甲+9+乙+9,比较一下这两个条件,很快得到丙的年龄是9岁;同理可以得到乙是9+3=12岁,甲是9+3+3=15岁,老师是9+12+15=36岁.
236. 全家4口人,父亲比母亲大3岁,姐姐比弟弟大2岁。四年前他们全家的年龄和为58岁,而现在是73岁。问:现在各人的年龄是多少?
解答:73-58=15≠4×4,我们知道四个人四年应该增长了4×4=16岁,但实际上只增长了15岁,为什么呢?是因为在4年前,弟弟还没有出生,那么弟弟今年应该是几岁呢?我们可以这样想:父亲、母亲、姐姐三个人4年增长了12岁,15-12=3,3就是弟弟的年龄!那么很快能得到姐姐是3+2=5岁,父母今年的年龄和是73-3-5=65岁,根据和差问题,就可以得到父亲是(65+3)÷2=34岁,母亲是65-34=31岁.
237. 小明爸爸让他将3个酒瓶卖5角钱. 结果小明分别卖给3个人每个2角.得了6角.爸爸让他把多的钱退还.小明路上买了4分钱的冰棒.剩的6分刚好退还3人每人2分.也就是说3人每人是1角8.共计5角4. 加买冰棒的4分.共计5角8.还有2分钱跑哪去了?
解析:3人每人是1角8.共计5角4,"加买冰棒的4分"是没有道理的。
应该减去买冰棒的4分,刚好是他们买酒瓶的钱
238. 一次检阅,接受检阅的一列彩车车队共30辆,每辆车长4米,前后每辆车相隔5米。这列车队共排列了多长?如果车队每秒行驶2米,那么这列车队要通过535米长的检阅场地,需要多少时间?
解析:车队间隔共有30-1=29(个),
每个间隔5米,所以,间隔的总长为:(30-1)×5=145(米),
而车身的总长为30×4=120(米),故这列车队的总长为:
(30-1)×5+30×4=265(米)。
由于车队要行265+535=800(米),且每秒行2米,
所以,车队通过检阅场地需要(265+535)÷2=400(秒)=6分40秒。
240. 一种商品,按期望得到50%的利润来定价。结果只销售掉70%商品,为尽早销掉剩下的商品,商店决定按定价打折出售。这样获得的全部利润,是原来所期望利润的82%问打了几折?
解析:假设成本为x,打折a,则定价为1.5x,期望利润为0.5x,
所以(0.7×0.5x+(1.5ax-x)×30%)/0.5x=0.82,求得a=0.8
——推荐阅读——
【省考公告】2014安徽公务员考试报名时间
【行测辅导】2014安徽公务员考试行测辅导
【申论辅导】2014安徽公务员考试申论辅导
【历年考试题】历年安徽公务员考试历年考试题
【辅导课程】2014安徽公务员考试培训
【网络课程】2014安徽公务员网络课程
以上是2014安徽公务员考试300道典型行测数学题题目及解析(五)(3)的全部内容,更多2020芜湖公务员安徽公务员信息请加公务员考试群,及关注芜湖公务员考试网及芜湖人事考试网。
(编辑:admin)